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ABSTRACT 
A new discretization scheme named NOTABLE (New Option for the Treatment of Advection in the 
Boundary Layer Equations) is presented. 

Despite its name, this scheme is intended to be used in a general transport equation to discretize the 
convective term. It is formally third-order accurate in regions of smooth solution and first-order accurate 
at grid points having local maxima. Within the finite-volume formulation it relates the face values to the 
nodal values via a non-linear function. 

This scheme has been compared with well-known high-order schemes like QUICK and it has always 
given more accurate solutions. After assessing the scheme in several unidimensional test cases for which 
an exact solution is available, its performance in a complex swirling flow is addressed. 
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INTRODUCTION 

The use of CFD to help the design process and to obtain detailed knowledge of the flowfield 
in industrial devices, for which a complete description of the flow behaviour is required, is 
becoming more and more widespread. There is an increasing number of commercial codes that 
are able to simulate complex physical phenomenon in complex geometries. Sophisticated tools, 
such as boundary-fitted coordinate systems or multigridding, enables the user to obtain accurate 
results in a reasonable time. On the other hand, turbulence closures, as second-moment transport 
models, have started to become common features in the new releases of the codes. There is no 
doubt that there has been considerable progress over the last decade in the use of these 
computational tools, and it is foreseeable that the advances will continue at the same pace. In 
this somewhat optimistic picture of the current numerical scenario there are several open questions 
that remain unanswered. 

Turbulence modelling is far from maturity. Reynolds-stress transport models (RSTM) that 
were considered to be a step (if not a leap) forward have shown some weaknesses when compared 
with classical two-equation models. And there is no consensus as to which RSTM is to be 
preferred. In fact, Shih and Lumley1 presented fourteen different turbulence models for the 
pressure-strain correlation term that were proposed over the last twenty years. No model seemed 
undoubtedly better than the others. 

In the numerics the situation is somewhat better. Progress in multigrid tecniques and 
linear/non-linear algebra procedures have greatly increased the speed of the computations. 
Progress in speed has moved in parallel with an increasing interest in developing improved 
schemes to discretize the convective term. The discretization of the first-derivative term of the 
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convection-diffusion equation is always a challenge and a source of problems. It is well known 
that schemes for which the truncation error contains second-order spatial derivatives are 
numerically diffusive. First-order upwinding belongs to this class of schemes. It has been used 
for many years in flow field calculations as part of the hybrid scheme. One of the reasons for 
this popularity is the diagonal-dominance of the coefficient matrix, ensuring the convergence of 
the iterative process. On the other hand, high-order schemes result in matrices that are not 
diagonally-dominant and special treatments are required to obtain a solution. Although the 
scheme-generated oscillation can be controlled from iteration to iteration2,3,4, the final solution 
does not satisfy the extrema principium, i.e. in the absence of sources the values of the function 
at interior points should lie between boundary values. In turbulent calculations, this non-physical 
behaviour is more annoying as there are several variables that should always be positive. Any 
undershoots are likely to cause the breakdown of the calculations. For instance, QUICK5, an 
emblematic high-order scheme, provokes oscillations when the cell Peclet number is 8/3, well 
below the values reached in practical flow calculations. Despite its inherent oscillating behaviour 
QUICK is much more accurate than the first-order upwind solution (at least, if the steep gradients 
do not cause any over/undershoots). 

Is there any way of obtaining a scheme as accurate as QUICK while satisfying the boundedness 
criterion? The answer is no if only linear schemes are used, i.e. if the cell face value is a linear 
function of the node values. If non-linear schemes are allowed, there is no difficulty in satisfying 
all the boundedness constraints while maintaining the same accuracy. 

In this paper, the derivation of the proposed scheme is carried out within the framework of 
the Normalized Variable Diagram6. In the NVD all linear and non-linear schemes can be related 
rather easily and the conditions for a scheme to be stable can be clearly identified. Moreover, 
recent schemes put forward in the last three years as SOUCUP7 and HLPA8 have been derived 
with the same diagram. The NVD will enable us to discuss the advantages and drawbacks of 
each of these schemes, even in expanding/contracting grids. The derivation of the new scheme 
will be explained in one-dimensional problems, its extension to two and three dimensions being 
straightforward. 

THE NORMALIZED VARIABLE DIAGRAM AND HIGH-ORDER SCHEMES 

The one-dimensional convection diffusion equation with constant coefficients gives upon 
integration over a control volume surrounding an arbitrary node P: 

where the subscripts e and w denote the right and left faces of the control volume. The convective 
velocity is represented by u and α stands for the diffusion coefficient. The left hand side comes 
from the integration of the first derivative. Within the control-volume formulation discretizing 
the convection term means finding suitable functional relationships between face values and 
node values. Initially, there is no limit in the number of nodes employed to express the 
discretization function but in this paper only computational molecules with at most five grid 
points are considered. This means that any face value is related to three nodal values at most. 
Following Patankar's9 notation, typical linear functions are: 

First-order upwind (FOU) 
Φe = ΦP 

Second-order upwind (SOU) 

Φe = 3/2Φp - Φw 
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QUICK 

fa = ½(ΦP + ΦE) - ⅛(ΦE + ΦW - 2ΦP) = ¾ΦP + ⅜ΦE - ⅛ΦW 

In the Appendix I, it is shown via a Taylor expansion that of all linear schemes QUICK is 
the most accurate in terms of local truncation error for Φe. The leading term of the neglected 
residual is of order (∆x)3, whereas the rest of linear schemes have local residuals of order (∆x)2 

or ∆x. 
If the high wave-number Fourier components of the solution are important (for instance, if 

it contains regions of steep gradients) the concept of leading term breaks down because all the 
terms in the expansion are significant. It is in these occasions when QUICK fails, producing 
over/under shoots in the solution. 

Before identifying in the NVD the regions where this unrealistic solution can be produced, let 
us define the Upwind Normalizing Operator (UNO). For a positive velocity coming from West 
to East the normalizing operator is defined in terms of the boundary values of the region W-E. 
This operator applied to the variable Φ gives, 

and it serves to normalize the Φ variable in the interval P-E. For an arbitrary interval in which 
Φ is to be normalized, this operator is always defined in terms of two nodal values. The nodes 
are the downwind boundary of this interval and the upwind node next to the upwind boundary. 
With this operator ΦE = 1 and ΦW = 0. In terms of the normalized variables the linear schemes 
can be written as: 

FOU 

Φe = ΦP 

SOU 

Φe = 3/2ΦP 

QUICK 
Φe = ⅜(1+ 2ΦP) 

The NVD represents Φe =f(ΦP). In this diagram these three schemes are represented by 
straight lines. 

In Appendix I it is shown that the necessary and sufficient condition for a scheme to be 
third-order accurate is to pass through the point (0.5, 0.75) in the NVD with a slope of 0.75. 
QUICK is the only linear scheme that satisfies both conditions. However QUICK passes neither 
through (0,0) nor through (1,1), a necessary condition for Φe = f(ΦP) to be continuous over the 
interval (— ∞, ∞). Moreover, outside the monotonic region (0 < ΦP < 1), Φe is not equal to ΦP. 
The interval in which QUICK is within the limits a scheme should lie to be bounded is ΦP ε (0, 5/6). 

Based on the NVD several alternatives to QUICK can be derived. For instance Zhu proposed 
HLPA, a scheme that fits a parabola through (0,0), (1,1) and (0.5,0.75) and that it is the same 
as Van Leer's10. Papadakis and Bergeles11 used BSOU, a combination of second-order upwind, 
first-order upwind and a flux blending technique, and Rodi et al. SOUCUP, a combination of 
second-order upwind, central and upwind differencing. All of them satisfy the boundedness limits. 

The proposed, NOTABLE, scheme is a logical extension of Van Leer scheme. The name comes 
from the fact that it was originally employed in the BL equations though it is intended for 
general use in the fluid flow equations. It approximates the discretization function with a third 
order polynomial in such a way that it has the slope of Q UICK at the point (0.5, 0.75). The reason 
for doing this is very simple, around ΦP = 0.5 it is important to ensure that the scheme is close 
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to being third-order accurate. It is expected that, except in regions where the result changes 
abruptly ΦP will be close to 0.5, the exact value for a locally linear solution. 

Recapitulating for an uniform grid the function Φe = f(ΦP) is for NOTABLE: 
1 Continuous over the interval (— ∞, ∞) 
2 Containing the points (0,0), (1,1) and (0.5, 0.75) 
3 Having a slope of 0.75 when passing through the latter 
The third-order polynomial is given by: 

Φe = ΦP(Φ2
P - 2.5ΦP + 2.5) 

The easiest way to implement NOTABLE in a code that uses a tridiagonal solver is by means 
of the Downwind Weighting Factor (DWF) defined as: 

For NOTABLE: 

Using the DWF, Φe can be expressed as: 

which can be thought of as first-order upwinding plus a correcting anti-diffusive term. The 
superscript distinguishes the values at the previous iteration from those of the current iteration. 

In the Appendix I it is shown that if the expansion/contraction ratio is constant the DWF for 
NOTABLE is: 

and for the Van Leer scheme is: 
DWF=ΦP 

for all values of a. 
In the Figure 1 the DWF for NOTABLE is presented for several ratios along with those for 

QUICK and HLPA. Note that the slope of DWF at ΦP = 0.5 is the same as QUICK again 
showing that NOTABLE is third-order accurate in that region. 

DISCUSSION OF RESULTS 

One-dimensional problems 
The first test case, to which NOTABLE was applied, is the linear convection-diffusion equation 

with values fixed on the boundaries: 

The exact solution exhibits a boundary layer type of behaviour with typical thickness of order 
of the inverse of the Peclet number based on the domain length. In the one-dimensional cases 
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tested the error is calculated as: 

and the computational effort is obtained by dividing the time taken by any scheme to converge 
by the time taken by QUICK. The formulation of Van Leer's scheme has been taken from 
Leonard12. It is the same as Zhu's scheme. In terms of the DWF, Van Leer's scheme reduces to 
considering the normalized value of Φ as the weighting factor, i.e. DWF = ΦP. Table I also 
compares results with SOUCUP, a recently proposed combined scheme. The first number if 
each box stands for the computational effort while the second is the total error. Several cases 
with different number of nodes and different Peclet numbers have been computed. In all of them, 
NOTABLE performed better than the others. A comment on the computational effort is 
appropriate. In the range of cases studied the Peclet number was below 8/3, so QUICK needed 
no special procedure to obtain a solution. In fact, QUICK 'converged' in just one iteration. On 
the other hand, Van Leer's and NOTABLE required an iterative process due to the explicit 
anti-diffusive source term. One is tempted to extrapolate these CPU time results to two and 
three dimensions where the history of convergence is determined by the non-linearities of the 
equations, the pressure-velocity coupling and some other non-linearities introduced by the 
turbulence model, if any. As in these cases the convergence is hardly affected by the extra 
scheme-related source term is very likely that NOTABLE and Van Leer will take around the 
same CPU time as QUICK. Results for a complex swirling flow, presented later in this paper, 
support this conjecture. 

The second one-dimensional case is a non-linear equation: the steady Burger's equation with 
values fixed on the boundaries. 
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N = 10 
Pe = 10 

N = 1 0 
Pe = 30 

N = 10 
Pe = 150 

N = 100 
Pe= 10 

N =100 
Pe = 30 

N = 100 
Pe = 50 

QUICK 

1 
3.59 x 1 0 - 2 

1 
3.25 x 1 0 - 2 

1 
2.89 x 1 0 - 2 

1 
3.76 x 1 0 - 3 

1 
3.79 x 1 0 - 3 

1 
3.77 x 1 0 - 3 

Table 1 

VAN LEER 

1.11 
1.05 x 1 0 - 2 

1.65 
1.59 x 1 0 - 2 

1.91 
1.60 x 1 0 - 2 

1.10 
1.60 x 1 0 - 4 

1.11 
4.40 x 10-4 

1.10 
6.68 x 10-4 

SOUCUP 

1.37 
1.87 x 1 0 - 2 

1.49 
2.22 x 10-2 

1.37 
2.15 x 10-4 

1.38 
3.84 x 1 0 - 4 

1.41 
9.76 x 10-4 

1.40 
1.37 x 1 0 - 3 

NOTABLE 

1.46 
4.46 x 1 0 - 3 

2.02 
1.06 x 1 0 - 2 

2.31 
4.32 x 1 0 - 3 

1.16 
3.84 x 10-5 

1.19 
1.39 x 10-4 

1.17 
2.48 x 1 0 - 4 

N=10 
v =0.01 

N =·50 
v =0.01 

N= 100 
v =0.01 

N =10 
v =0.03 

N = 50 
v =0.03 

N = 100 
v =0.03 

QUICK 

1 
2.33 x 1 0 - 2 

1 
7.68 x 10 - 2 

1 
3.90 x 1 0 - 3 

1 
3.63 x 1 0 - 2 

1 
7.84 x 1 0 - 3 

1 
3.96 x 1 0 - 3 

Table 2 

VAN LEER 

1.18 
1.31 x 1 0 - 2 

0.99 
2.84 x 1 0 - 3 

0.99 
2.84 x 1 0 - 3 

0.99 
1.45 x 10 - 2 

0.84 
1.14 x 1 0 - 3 

0.84 
2.42 x 1 0 - 4 

SOUCUP 

1.22 
1.74 x 1 0 - 2 

1.02 
4.54 x 1 0 - 2 

1.04 
1.67 x 1 0 - 3 

1.02 
2.31 x 1 0 - 2 

1.03 
2.48 x 10-3 

1.03 
6.8 x 1 0 - 4 

NOTABLE 

2.8 
1.07 x 1 0 - 2 

1.19 
1.6 x 1 0 - 3 

0.9 
3.41 x 1 0 - 4 

1.04 
8.07 x 1 0 - 3 

0.89 
2.5 x 1 0 - 4 

0.89 
5.41 x 1 0 - 5 

The exaction solution is: 

and C1 is given by: 

Table 2 shows comparative results for this test case. Again NOTABLE out-performs the rest of 
the schemes. Owing to the non-linearity of the equation, the history of convergence is a bit 
awkward. For a small number of grid points NOTABLE takes 3 times as much time as QUICK, 
whereas, for a greater number of points, the time is comparable, both Van leer's and NOTABLE 
taking slightly less. Note that no under relaxation is employed and that the first case with n = 10 
is characterized by strong fluctuations of the Downwind Weighting Factor from one iteration 
to the next. This fact strongly reduces the speed of convergence. 
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Flow inside an experimental combustor 
To assess the performance of NOTABLE in a flow with a complex pattern, the model combustor 

studied by Roback & Johnson was chosen as a test case. 
The experimental configuration consisted of a cylindrical model combustor with a radius of 

61 mm and a total length of 1016 mm. Inside this cylinder two streams of water were injected: 
a central jet with no rotation and an annular swirling jet surrounding the former. Mean and 
turbulent data were available at 9 stations downstream of the inlet. 

A cylindrical coordinate system was employed. All grids presented are constant in the radial 
direction and expands in the axial direction with an expansion ratio of 1.03. The boundary 
conditions were as follows: 

• In the symmetry axis, zero gradient was adopted for U, k and ε. V and W were zero in the axis. 
• In the node adjacent to a solid boundary the standard wall functions were used. 
• The computational inlet was taken at the first measuring station. 
At this station, measured profiles for U, V, W were used as boundary conditions as well as 

that for k. The dissipation was evaluated using the formula: 

where Cµ is a k-ε model constant and L is a length scale related to the integral length scale. 
For the core jet region L = 0.03 R and the same expression was used for the annular jet by 
substituting R by the annular gap. In the region where the inlet is in the vicinity of a solid 
boundary, the wall function approach was employed. 

Tests for grid independency were carried out. Figure 2 depicts the isocontours for the velocity 
and a trace scalar for the grids 50 x 40 and 100 x 80 for NOTABLE. The slight discrepancies 
between both grids allow the results to be considered as grid independent. 

In Figure 3 results for NOTABLE and the POWER-LAW scheme (PLS) of Patankar (referred 
to as Potential in the figure box are given). Two grids are presented for the PLS: 25 x 20 and 
50 x 40, and one for NOTABLE: 25 x 20. Axial velocity changes reveal the development of the 
different streams of the flow. The velocity of the central jet rapidly diminishes with axial distance 
until it becomes negative. From then on, a backward velocity region is established which extends 
up to fifty percent of the radius. None of the schemes predict the existence of a small backward 
velocity region at x = 25 mm in the wake of the internal pipe that enhances the mixing as the 
flow has a S-shaped pattern. Negative velocities at the centreline are present beyond x = 152 mm. 
The numerical predictions are reasonably good over the whole length of the domain, except for 
the power-law scheme with the grid 25 x 20. The improvement in the predictions brought about 
by NOTABLE is manifest as it provides similar results to PLS with four times less nodes. 

With respect to the azimuthal velocity profiles, it can be seen that the peak initially moves 
outwards. After the swirling jets impinges on the wall, the experiments show a region close to 
the centreline where the velocity is proportional to r (solid body rotation) and a region of 
constant W. The predictions tend to show a W profile varying linearly over a larger radial 
distance. This is due to the inadequacy of the k-ε turbulence model. It is well known that this 
model is based on the existence of an isotropic turbulent viscosity. In swirling flows, this 
assumption is incorrect as the radial transport of fluctuating angular momentum is much less 
than that obtained with an eddy viscosity approach. With this latter assumption, there is more 
radial dispersion of angular momentum and the flow tends to adopt a solid body rotation type 
of motion. 

In Figure 4 results for finer grids are presented for both NOTABLE and PLS along with those 
for NOTABLE with the coarsest grid. The purpose of this figure is twofold. Firstly, to demonstrate 
that even with finer grids PLS shows a certain amount of numerical diffusion whereas NOTABLE 
always gives sharper profiles. Secondly, to highlight that, even with a grid as coarse as 25 x 20, 
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NOTABLE reproduces qualitatively the flow pattern although all peaks in U velocity are under-
predicted. 

A final word is adequate regarding the CPU time. In all the tests carried out in Roback & 
Johnson combustor NOTABLE converged in less iterations than PLS. However, as an 
extra-source term has to be calculated for each node in every iteration the CPU time per iteration 
is greater. In the end, NOTABLE takes on average 10 percent more time than PLS. 
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CONCLUSIONS 

A new scheme named NOTABLE is proposed. It is formally third-order accurate in regions of 
smooth solution and first-order accurate at points having local maxima. Its implementation by 
means of the Downwind Weighting Factor is very simple, affecting, exclusively, the source terms. 
The accuracy attained is very satisfactory, even in coarse grids. The derivation of general relations 
for a non-uniform grid allows the method to maintain the same accuracy, even in 
expanding/contracting grids. Its performance in a complex swirling flow is encouraging showing 
no significant increase in the CPU time required. 
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APPENDIX I 

The aim of this Appendix is to develop functional relations between Φe = Φi-1/2 and ΦP = Φi 
for third-order accurate schemes. The relations are to be obtained in a general expanding/contracting 
grid. Let 'i' be the index of an arbitrary node in the one-dimensional domain. This represents 
the downwind boundary of the interval to be normalized. We seek relations of the type 
Φ i -1/2 =f(Φi-1). Note that 'i — 1/2' represents the right boundary of the finite volume associated 
to the node i — 1 and that it does not need to be located midway between nodes i — 1 and i. 

Performing a Taylor series expansion around Φi-1/2 we obtain: 
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In terms of ∆x+ and the expansion/contraction ratios 

and 

the above expansion become: 

We seek linear combinations of the expansions to make the first derivative terms disappear, 
that is: 

with the coefficients satisfying: 

or 
a = aß + bδ (A3) 

where 

In terms of the normalized variables: 

To find the universal point through which all the second-order schemes pass, let us make the 
previous relation independent of ß and δ, that means: 

pa + ßΦi-1 + δb = ßk1(a + 1) + δk1(b + 1) 
ß[a+ Φi-1- k1(a + 1)] + δ[b - k1(1+ b)]=0 
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ß and δ are independent of each other, so each term containing ß or δ should be zero, i.e.: 

and 

Note that if the grid has constant spacing b = 3 and a = 1 and Φi-1/2 = 0.75; Φi-1 = 0.5 
(Leonard, 1988). 

If the second-derivative term has to be zero the coefficients must also satisfy: 

or a + ßa2 + δb2 = 0 with a and ß defined previously. 
With the relation (A3): 

ßa(1+ a) + δb(1+ b) = 0 
The slope of Φi-1/2 = f(Φi-1) at the universal point is given by: 

Again if b = 3 and a = 1 (constant spacing) the slope is 0.75 (Leonard (1988)). 
The functional relation given by NOTABLE is: 

Φ i - 1 / 2 = Φi-1(c1Φ2
1 i-1 + c2Φi-1 + c3) 

where c1,c2, c3 are constants obtained by imposing that the function passes through (1, 1), and 

with a slope through the latter of 

If the grid is uniform the function becomes: 

Φ i-1/2 = Φi-1(Φ2
i-1 - 2.5Φ1-1 + 2.5) 

In terms of the Downwind Weighting Factor (DWF) the above relation reads: 
DWF= 1.5Φi-1 - Φ2

1-1 
In the case of locally constant expansion/contraction ratio, i.e. r2 = r1 the DWF becomes: 


